
si~nple algebraic functions such as those of Margules, 
van Laar, etc. Through Equation (2) the effect of pressure 
is separated from the effect of composition and, as a result, 
interpretation and correlation of phase equilibrium data are 
very much facilitated (18). 

Experimental data for partial molar volumes are rare for 
binary systems and for multicomponent systems there are 
essentially none. Since thermodynamic analysis or predic­
tion of multicomponent high-pressure phase equilibria re­
quires partial molar volumes, we require a reliable method 
for calculating partial molar volumes from a minimum of 
experimental information. In the following, we present 
such a method, applicable up to critical compositions, for 
calculating partial molar volumes in multicomponent liquid 
mixtures at saturation. 

PARTIAL MOLAR VOLUME FROM AN 
EQUATION OF STATE 

The partial molar volume of component k in a mixture of 
N component is defined by 

- (av) (3) 
v" = an" P, T,n ;(ifk) 

TIle partial molar volume can be evaluated from a suit­
able equation of state for the liquid mixture. Since most 
equations of state arc explicit in pressure, rather than in 
volume, it is convenient to rewrite Equation (3): 

_ -(:~ )T, V,n;(i~ie) 
v,,= = f(x,T,v) 

(~~)T'1!;(oJl i) 

(4) 

With an equation of state, Equation (4) gives Vie as a func­
tion of the composition, temperature, and molar volume of 
th e liquid mixture. Pressure does not appear explicitly in 
Equation (4), but is implicit in the volume which depends 
on the pressure. 

For practical applications in vapor-liquid equilibria, we 
require partial molar volumes at saturation; therefore, we 
need the saturated molar volume of the liquid mixture in 
Equation (4). Before discussing Equation (4) in more de­
tail, we describe a method for calculating the molar volume 
of a saturated liquid mixture. 

SATURATED MOLAR VOLUME OF LIQUID MIXTURES 
UP TO A REDUCED TEMPERATURE OF 0.93 

Given only the temperature and composition, it is pos­
sible, in principle, to calculate the saturated volume of a 
liquid mixture from an equation of state. Such a calcula­
tion, however, requires an equation of state capable of de­
scribing accurately both vapor and liquid phases of multi­
component systems. For a wide variety of mixtures, no 
such equation of state is known. (In fact, the entire prob­
lem of phase equilibria at any pressure could be completely 
solved if such an equation of state were available.) A 
more realistic and fruitful approach is provided by a corre­
sponding-states correlation specifically developed for 
saturated liquids. Such a correlation was given by Lyck­
man and Eckert (11), who slightly revi sed Pi tzer' s 
tables (15) for the saturated liquid volume of pure sub­
stances. In this correlation, the reduced saturated volume 
is given by 

(5) 

where w is the acentric factor (15,19) and vdo), vd'), and 
vd' J are functions of reduced temperature which have been 
tabulated for reduced temperatures from 0.560 to 0.990 (1). 
To facilitate calculations with an electronic computer, we 

TABLE 1. COEFFICIENTS IN EQUATION (6) FOR REDUCED 

VOLUMES OF SATURATED LIQUlDst 

o 0.11917 0.009513 0.21091 -0.06922 0.07480 -0.084476 ' 
1 0.98465 -1.60378 1.82484 -0.61432 -0.34546 0.087037 
2 -0.55314 -0.15793 -1.01601 0.34095 0.46795 -0.239938 

tFor reduced temperatures from 0.560 to 0.995. 

fitted the tabulated values with the following relation: 

vJj) = a(j) + b(j) T R + c(j) T R' + cf.il T Ii + e(j) I T R + 

f(j) In (1 - T R) (6) 

where a(j) to f(j) are coefficients for v~O), V~I) and vJ 1l ; 
these coefficients are given in Table 1. 

The reducing parameters for the reduced volume and the 
reduced temperature are the critical volume and the critical 

- temperature, respectively. For v Jo), Equation (6) agree s 
with the originally tabulated values to the fourth significant 
figure; for VR(d and v~'l it agrees within ± l in the fourth 
significant figure. For pure components, Equations (5) 
and (6) may be used for reduc,ed temperatures from 0.560 to 
0.995. For reduced temperatures above 0.995, the reduced 
volume may be obtained by first calculating the reduced vol­
umes at TR of 0.990 and 0.995, and then interpolating to 
TR = 1.0; by definition VR = 1.0 at TR = 1.0. 

Equations (5) and (6) were obtained from pure component 
data. For application to mixtures, mixing rules for the 
pseudocritical volume and temperature are necessary. For 
pseudoreduced temperatures up to 0.93 we suggest the fol­
lowing rules: 

where 

TcM = L L <lJi<IJ; TCi; 

; 

wM = L <lJiwi 

(8) 

(9) 

(I 0) 

(11) 

Because of the small separation between molecules, mo­
lecular size is a more important factor in the liquid phase 
than in the vapor phase. Therefore, in Equations (8) 
and (9), w,e use volume fractions rather th an mole fractions 
(or combinations of mole fractions and volume fractions) 
which were used in previous pseudocritical rules (6, 8, 
10, 20, 26). 

The constant k;; has an abso lute value much le ss th an 
unity; it represents the deviation from the geometric-mean 
rule for the characteristic temperature of the i-j pair. To 
a good approximation, k i ; is a constant independent of 
temperature and density. The binary constant kij must be 
evaluated from some binary data (for example, second virial 
coefficients or solubility), which give information on the 
nature of i-j interactions. Table 2 gives some of the k;; 
values used in this work. These values, although obtained 
from liquid phase measurements, are in good agreement 
with those obtained by Gunn (20) from second virial cross 
coefficients, and with those reported by Pitzer and Hult­
gren (16) from compressibility factors near the critical 
region. For paraffin· paraffin systems, experimentally de-
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